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T A K I N G  I N T O  A C C O U N T  T H E  D Y N A M I C S  

I N  D E S C R I P T I O N  O F  F R A C T U R E  O F  B R I T T L E  M E D I A  

B Y  A N  E X P L O S I O N  O F  A C O R D  C H A R G E  

E. N. Sher  UDC 622.235 

This s tudy is a continuat ion of [1, 2] in which the parameters of explosive fracture caused by a deep-hole 
charge in brit t le rocks were est imated.  In [1], such estimates were obtained in a static approximation. The 
static approach does not allow one to estimate the t ime parameters of the process and to make allowance for 
the effect of flowing of gaseous detonation products over a well and tamping. For a dynamic  description of 
bri t t le-medium fracture by an explosion of a cord charge, it is important  to take into account the dynamics of 
evolution of the radial-crack zone. In [2], the author proposed an energy approach to the description of such a 
zone within the framework of the zone theory of explosion in solid media [3--6]. Near the HE charge, this zone 
is usually divided into a grinding zone, a radial-crack zone, and an external elasticity zone. Although it is 
possible to describe the dynamics of evolution of the zones in question by numerical methods,  it is of interest to 
take into account approximately the dynamics of the process and to estimate the parameters  computationally 
and analytically. 

In the present study, we apply an exact dynamic  description to the grinding zone in which inertial 
forces are maximal.  For the radial-crack and elasticity zones, a quasi-static description is used to determine 
stresses and strains. In this case, we use the dynamics of the process in determining the  radial-crack front by 
the dynamic crack s t rength  of a medium.  

F o r m u l a t i o n  o f  t h e  P r o b l e m .  We shall consider the axisymmetric deformation and fracture of 
an isotropic bri t t le m e d i u m  under  the action of an explosion of an infinite cylindrical HE charge. Charge 
detonation is assumed to be instantaneous,  and deformation of a medium is assumed to be plane. Consideration 
as a whole is performed without  taking into account the waves in the isochronous model  of Mashukov et al. 
[7] in which the shock wave in a medium is assumed to leave rapidly the explosion cavity, carrying away a 
certain portion of energy, the  main events are assumed to occur after it, and the stress and strain fields are 
assumed to be close to static fields determined for a load at a given moment  of time. One can then separate 
several stages in the evolution of the explosion. 

(1) The  wave of fracture moves with a velocity exceeding a maximum crack velocity vmax. At this stage, 
there are two zones: a plastic zone for a ~< r ~< b and an elastic one for r t> b, where a(t)  is the explosion-cavity 
radius, b(t) is the boundary  of the plastic zone, and r is the current radius. 

(2) When the rate of growth of the plastic zone decreases and the inequality b ~< vmax is satisfied, a 
radial-crack zone appears for b ~< r ~< l [l(t) is the radius of the radial-crack zone front]. An elasticity zone 
appears for r >1 l(t).  

For stresses and strains in the radial-crack zone, the static relations for loads at the current moment  are 
also assumed to be satisfied. The  crack density in this zone is an additional parameter  of the process. Analysis 
of the experimental  da ta  has shown that  in the process of development of the radial-crack zone, the number 
of radial cracks decreases. Some cracks stop, thus giving the others the possibility of further development. To 
estimate the crack density at various distances from the explosion center, we performed calculations for the 
second stage for some values of the number  N of cracks, for example, N = 128, 64, 32, 16, 8, and 4. 
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C o m p u t a t i o n a l  M o d e l .  Let us write the equations of motion and the general solutions for each zone. 
The gas pressure in the explosion cavity is calculated using the modified Jones-Miller adiabat [6] for 

a trotyl cylindrical charge in the form 

po(a/ao) 2"/1, a <~ a*, 

p(a) = po(a*/ao)-271(a/a*) -272, a >/ a*, 

where P0 = 3.32 �9 109 Pa, 3'1 -- 3, 3'2 = 1.27, a*/ao = 1.89, a0 is the initial charge radius, and a is the cavity 
radius. 

It is assumed that  the equations of motion of an incompressible loose medium is satisfied in the grinding 
zone near the charge. For the one-dimensional case of axial symmetry,  in a cylindrical coordinate system (r, 0) 
we have 

p = 0 r  (1) 

Here p is the density of the medium, v is the radial velocity, and crr and cr 0 are the stress-tensor components. 
respectively. The Coulomb law [6] r = C - ~r tan ~ (r  and rr are the tangential and normal stresses on a 
shear site) is used as a constitutive relation. In expansion of the explosion cavity in this zone, in terms of the 
principal stresses of the axisymmetric problem we have 

( l + a ) c r o - c r r - Y = O  [ Y = 2 C c o s ~ / ( 1 - s i n ~ ) ,  a = 2s in~/ (1  - sin~)]. (2) 

In compression of the cavity, the yield condition takes the form (1 + a)r  - a0 - Y = 0 which can formally 
be reduced to (2) with new a l  and YI: (1 + al)O',~ - -  o ' r  - -  Y1 = 0 ,  Otl  : --a/(1 + a),  and Y1 = - Y / ( 1  + a). 
Relation (2) is satisfied provided that  the shear sites are parallel to the axis of symmetry. This is true if the 
initial compression by rock pressure along the z axis is the average pressure relative to the other axes. 

The incompressibility condition in the grinding zone enables one to write the velocity of any point of 
the medium as 

v(r, t) = an~r, (3) 

where a(t) is the radius of the explosion cavity. 
Excluding a,~ from (1) by means of (2) and using (3), for ar we obtain the equation 

a n ,  a o',-_ Y ( a a + 6  2 (~_.a)2 '~ 

Or + (1 + ~-------) r (1 + cr)r + p , r r 3 ] 

whose general solution is representable in the form 

Y ( + a (1 + a)  1 "~ ~rr = - -  + p (5a + 62) 1 + (6a) 2 F(t)r -~'/0+~'). (4) 
. + 

For the displacement ub, at the boundary of the grinding zone r = b(t), from the incompressibility condition 
it follows that 

a 2 - a o  2 = b 2 - ( b  - u b )  2 .  

For b ~< r ~< 1, in the radial-crack zone we have 

ao = 0, ~ = -Pbb/r,  (6) 

du 
- (1 - v2)Pbb/(Er), u = uo(t) - (I - v2)(Pb/E)bln(r/ao), 

dr 
where Pb is the radial pressure for r = b, u is the radial displacement, E and v are the Young and Poisson 
moduli of the fractured medium, and uo(t) is an arbitrary function of time. 

In plane deformation, in the elasticity zone, for r />  l(t) we have the general static solution 

O" r --~ - P  - EB/[(1 + v)r2], a~ = - P  + EB/[(1 + v)r2], 
(7) 
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u = B / r  - (1 + v)(1 - 2 v ) r P / E .  

Here P is the rock pressure in the medium and B is an arbitrary constant which is a function of t ime in thc 
quasi-static consideration. 

The arbitrary functions F ( t ) ,  uo( t ) ,  and B ( t )  in (4), (6), and (7) are defined by the initial and boundary 
conditions. 

At the first stage of development of the grinding zone, the following boundary conditions are satisfied: 
- -  at the explosion cavity, the radial stress in the grinding zone is equal to the gas pressure at the cavity: 

a r = - p ( a )  for r = a ( t ) ;  (8) 

- -  in front of the fragmentat ion wave, in the elastic med ium the shear-fracture Coulomb-Moore  criterion 
holds: 

( l + a 2 ) a 0 - a r - Y 2 = O  for r = b ( t ) ,  (9) 

- -  and displacements are continuous: 

u(b  - O) = u(b + 0) = Ub. (10) 

The fracture criterion (9) corresponds to the rectilinear envelope of the Moore circles and was confirmed 
for rocks by Mashukov et al. [7]. The  parameters a2 and 1/2 can be found from the uniaxial tension at and 
compression ar tests: 

a2 = a t / a t  - 1, Y2 = ac. (11) 

As an illustration, we shall consider Plexiglas with ac = 1.6 �9 108 Pa and at = 6 �9 1 0  7 Pa, according to 
static tests. Using formulas (11), we find a2 = 1.66 and IQ = 1.6.10 s Pa. For rocks from the 6th to the 20th 
strength category, according to (11), from static uniaxial tests we have a2 = 7-12 and ~ = (0.6-2.7). 10 s Pa. 
The difference of the coefficients of the elast ic-medium fracture criterion (9) and the medium-yield condition 
(2) in the grinding zone is considerable as compared with those in [3, 6]. The similarity of Eqs. (2) and (9) 
simplifies calculations but  is not obligatory; for example, as (9), we could use the dependence al  - a2 = 
f ( a l / a 2 )  (al and a2 are the principal stresses), which is determined for many rocks in [8]. 

In a quasi-static approach, stresses are usually assumed to be continuous [6] in passage through the 
fragmentation wave. The  kinetic energy of the medium in the grinding zone increases with increasing b owing 
to the a t tachment  of the moving layers of the elastic zone which has no kinetic energy from a formal point 
of view. This paradox is due to the  fact that  inertial terms are ignored in the description of the elastic zone. 
As a correction to the quasi-static description, we assume that  the particles of the m e d i u m  accelerate in the 
fragmentation wave from zero velocity to ub- For the stress in the grinding zone, with r = b(t)  - O, this yields 
the following equation: 

ar(b - 0) = -p~bb + ar(b + 0). (12) 

For (a 2 - a2o)/b 2 << 1, from conditions (5), (9), and (10) we find 

b V~ a 2 I E(2 + ct2) u b l  
a a 2' 2(1 + v)(Y2 + P~2) b 2n 2' (13) 

ar(b  + 0) = -[Y2 + 2P(1 + a2)]/(2 + a2). 

It follows from (12) and (13) that  

a (b - 0)  = a r ( b  + 0)  - p a 2 a 2 / [ 2 ( a 2  - (14)  

In what follows, we use nondimensional  variables. We use a0 as a length scale, ao/co as t ime (c 2 = E / p ) ,  and 
E as a stress. Subst i tut ing the general solution (4) into the boundary conditions (8) and (14) and using (13), 
for a( t )  we obtain the following camouflet equation in nondimensional form: 

g l ( a ) a a  + ( g l ( a )  - g~(a))a 2 + K3  - p (a )  = O. (15) 
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Here K,  = ((1 + a)/,~)[m~'/(~+<') - II, K2 = ((1 + ,~)/(2 + a)){1 - m-(2+<')/(1+<') l - (a212(a 2 - 1))m <~/(~+<'). 

K3 = ((Y2 + 2(1 + 0<2)P)/(2 + 0<2) + Y I ~ ) ~  <'i(1+<') - YI0<, and m = n ~ / i  - i / a  2 = b in .  Because of the 
approximate knowledge of b(a) in (13), we take the initial conditions of the problem for t = 0 and a = b = 1 
at the displaced point at t = 0 in the form 

a =  + e ,  h = 0 .  (16) 

For (16), with e << i, from (13) it follows that b ~ qn21(n  2 - 1) + n2e. 
The difference of the initial values of a and b from unity in (16) is negligible if n >> 1. Here a ~ b ~ 

1 + 1/(2n2). For rocks, n ~ 10, and, for n = 7, such a deviation amounts to 0.01. Calculations performed 
using Eq. (15) and the initial condition (16) have shown that as e decreases, the integral curves approach the 
limiting shape. It was further assumed that s = 0.02. 

From these calculations, it follows that at the beginning of the process of fracture development the 
propagation velocity of the fragmentation zone grows intensely, reaches a maximum, and then diminishes. In 
decreasing this velocity to the maximum crack velocity in this medium, the character of fracture propagation 
can change. If the stress state allows a great deal of radial cracks to move away from the fracture front 
(larger than N1), then propagating with a higher (compared with the fragmentation front) velocity, these 
cracks will cut the material  before the fragmentation front into radial rods, make it free from tension in 
the tangential direction and thereby strengthening it against fragmentation in the front. In this case, the 
fragmentation front will stop, and fracture will occur owing to the propagation of the radial-crack zone. If the 
load-consistent number of cracks which have the front velocity is not sufficient for unloading of the tangential 
tension before the fragmentat ion front (N < N1), the front will propagate according to (15) until N is equal 
to N1. After that,  the fragmentation front and the radial-crack zone stop to propagate. Introduction of the 
threshold value N1 is a simplifying hypothesis of the proposed calculational scheme. In calculations, N1 = 64. 

For the second stage of fracture in which three zones exist, an equation of the type of (15) is derived 
from the boundary conditions in the explosion cavities and at the boundaries of the zones. 

In the explosion zone, trr = - p ( a )  for r = a(t); at the boundary of the grinding zone, we have 

~(b - 0) = u(b + 0),  ~ , (b  - 0) = ~ , ( b  + 0) = - ~ ,  ~1 ,< ~c (17) 

for r = b(t), and in the front of radial cracks, u(l - O) = u(l + 0) and c r r ( / -  0) = a t ( / +  0) = q for r = l(t). 
With satisfaction of the equality in the stress condition (17), fragmentation of the radial cracks in the rod 
zone occurs, and b(t) increases with time. In the opposite case [trr(b+ 0) > - a t ] ,  the boundary of the grinding 
zone is immobile (b = 0). 

Using the solutions (5)-(7) and excluding uo(t) from (17), in the approximation (a 2 - 1)/b 2 << 1, we 
have 

ub .~ (a 2 - 1)/(2b), ( a 2 - 1 ) l ( 2 b 2 ) + ( l + u ) ( P l / b - a l ) + ( 1 - i f l ) a l  I n (b l l ) - ( l+r , ) (1  - 2ix)P(1 - lib) = 0. (18) 

For al = at, differentiating with respect to t, from (18) we find 

= i ( ( 1  - ~ 2 ) ~ < ( b / l )  - 2 (1  - u2)P) - h(alb) for crl = crc, 
(1 - i,,2)ac - (a  2 - 1 ) / b  2 - 2(1 - u2)P(ll b) (19) 

b = 0  for al < ac. 

Substituting the solution (4) into the boundary conditions in the explosion cavity and at the boundary of the 
grinding zone and excluding F(t ) ,  we obtain the following camouflet equation: 

K i a a  + ( g l  - K2)a 2 + ~ - p(a) = 0. (20)  

Here 

- -  - -  - 1  ; 
0< 

K - ~ =  1 + ~  1 -  
2 + a  
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and, for o'1 < o.o we obtain 

o.1 -~" 

]~3 = (o.1 + ~ ) ( ( ! ) a / { l + a }  -- 1) +o.l; 

(a 2 - 1)/(2b 2) + (1 + v)P(2(1 - v)I/b- 1 + 2v) 

(1 + + (1 - I n ( t / b )  

For l(t), in dimensionless form, we have 

' i { VmaXCo 1 -- exp ( - - f l ( ~ - O  -- ( (~]71/ 1))1)), 
l _ e x p . _ 3 ,  f--.7o 7 o < 7 < 7 1 ,  

= - ( 2 1 )  
?)max 

where 70 and 71 are the specific surface energy of fracturing at the beginning of displacement and branching, 
respectively. 

The dependence (21) was proposed by the author  in [9] as an interpolation dependence for 
experimentally de terminated  certificate dependences of a number  of brittle media  that  relate yielding and 
the crack propagation velocity. 

The current value of 7 is found from the energy condition in the radial-crack front [2]. In plane 
deformation and axial symmetry,  we have 

27N/(2rl) . . r  elast  elast  elast  elastx ,~ ,- s t  s t  s t .  s t  _elastx 
= U'O[,O.r ~ r  "+" 0"0 ~0  ) - -  U 'O~r  o.r + o.r [,~r - -  e:r )" 

Here _e las t  _ e l a s t  _ela.st a n d  ~elast r , "0 , ~r , t 0 are the stresses and strains before the crack-zone front in the elastic zone 
st a n d  at for r = l + 0 and a r r are the  stresses and strains in the rod of radial cracks for r = I - 0. Substitution 

of the stresses and strains from (6) and (7) yields 

2 7 =  1 - v  2 -21rl b 
E (2P + q )  ~ ;  q = - a l ~ .  (22) 

The  dependence (22) agrees well with the solutions of the problems of the plane elasticity theory on equilibrium 
of a star of N cracks in expansion by the inner pressure o.1 over the radius b and by the rock pressure P. 
Hence, from (22) it follows that  KI = 2Pvf~/N-o'lby/~/Nl which coincides, for large S, with the asymptotic 
relations of the solutions of the  aforementioned problems [10, 11]. 

C a l c u l a t i o n s  o f  t h e  D y n a m i c s  o f  a F r a g m e n t a t i o n  Wave .  The dynamics of the explosion-cavity 
radius was calculated by Eq. (15) which was derived for the case of fragmentation-wave propagation in an 
elastic med ium until  the full s toppage of propagation of the cavity and of the f ragmentat ion wave. The values 
obtained for the cavity and fragmentation-wave radii at the moment  when the radial-crack zone front separates 
from the fragmentation-wave front were used as initial data  for calculations of the second stage of fracture of 
britt le media in the radial-crack zone. 

The characteristic explosion-cavity trajectories in a and t coordinates are given in Fig.1. In the 
calculations, we used the following parameters: Y = 8 .  l0 s Pa and c~ = 0.1, 0.5, and 1.0 (curves i-3). 
The remaining parameters were taken from the initial set of parameters,  which determine their average values 
for rocks: E = 101~ Pa, p = 2500 k g / m  3, v = 0.5, Y = 8 .107  Pa, ct = 4, o.c = 8 .  l0 s Pa, 70 = 150 J / m  2, 
7t = 1500 J / m  2, Vmax = 650 m/sec,  /3 = 1, a0 = 0.0225 m, a2 = 11.2, P = 10 s Pa, p0 = 3.32.109 Pa, 
and Y2 = 8 �9 l0 s Pa. Curve 4 in Fig. 1 shows the dependence a(t) for the basic variant. Clearly, owing to the 
internal friction of the med ium in the grinding zone, there are aperiodic and oscillatory regimes of explosion- 
cavity motion. Note that  the inverse motion occurs only for fairly small values of a and of the friction angle 
[~ < 200 by (2)]. In the opposite case, in development of the grinding zone, the ground material would be 
dynamically thrown, in the expansion phase, deep in the medium and would not return after stoppage to 
the explosion center, thus remaining blocked in the compression phase of the bulk material. Moreover, the 
elastic component  of compression which is presumably small as compared with the plastic component  was not 
taken into account in calculations. This blocking turns out also to be determining for the scale of fracture in 

488 



5.0 

a/a o 

2.5 

' "A 

1'o 16o %1% ,ooo 

Fig. 1 

1000 

l / a  o, 
b /a  o 

100 

10 1.0 
lb 16o %/% lOOO 

Fig. 2 

10.0 

ala o 

3.2 

the radial-crack zone, because it causes loading of a brittle medium which is close to a static loading by an 
expanded piston behind the front of the stopped fragmentation wave. 

S t a t i c  E s t i m a t i o n  o f  F r a c t u r e  in t h e  R a d i a l - C r a c k  Zone  A c c o r d i n g  to  D a t a  on the  
M e d i u m ' s  E x p a n s i o n  in a F r a g m e n t a t i o n  Wave .  If after the fragmentation front and the explosion 
cavity stop to propagate, the values of the cavity radius and of the fragmentation-wave front are ak and bk 
and the back collapse of the cavity is impossible because of friction in the grinding zone, one can find, by 
formula (5) or by an approximate formula for a 2 - a20 << b 2, the displacement ub at the inner boundary of the 
radial-crack zone. Let us calculate the limiting number of cracks N in the radial-crack zone of length 1. Using 
(20) and (22), we obtain 

N - 7rl(1 - v2) [q + 2P] 2, (23) 
27o 

where 

1 ub + (1 -t- v ) I P  a 2 - 1 

q = - l ' ( l + , ) + ( 1 - u 2 ) l n ( I / b k )  ; ub.~ 2b-----~ 

For large l/bk and small P,  we have in dimensional form 

E(a  - a0 ) 
N ~ (24) 

8 0tb (i - 

C a l c u l a t i o n s  o f  t h e  D y n a m i c s  of  F r a c t u r e  o f  a B r i t t l e  M e d i u m  by  an  Exp los ion  of  a 
Cy l ind r i ca l  C h a r g e  in F r a g m e n t a t i o n  a n d  R a d i a l - C r a c k  Zones .  Calculations were performed in terms 
of the initial set of parameters with variation of them in order to reveal the characteristic features of the 
process and to arrange the parameters, depending on the degree of their effect on the final result for fracture. 

Figure 2 shows the dependences a(t) and b(t) (curves 1 and 2), and 1N(t) (curves 3-6 for N = 4, 8, 16, 
and 32) for the initial set of parameters. The estimates of the final value of lN obtained in this calculation 
differ by not greater than 5% from those obtained using formulas (23) with the ak and bk values from the 
dynamic calculation and is Is = 276 and 14 = 406, respectively. The diagrams in Fig. 2 are characterized by 
a monotone increase in the parameters which is more rapid when the fragmentation zone grows and slower 
when the radial-crack zone increases. The behavior of the solution changed as soon as the return motion of 
the explosion cavity begins for small values of internal friction (c~ < 1). For c~ = 0.1 and Y = 8 �9 105 Pa, the 
dependences a(t),/s(t),  and is(t) are shown in Fig. 3 (curves 1, 3, and 5, respectively). Variations in the cavity 
radius during the development of the radial-crack zone lead to the stoppage of the periodic crack and of the 
formation of subsequent monotone sections of crack elongation. The final length Is is in good agreement with 
the estimate according to formula (23). The sections of curves 2 and 4 in Fig. 3 correspond to b(t) and b(t) 
at the first stage of fracture. 

In the calculations, the values of the initial set of parameters were varied as follows: E = 109-10 II Pa, 
p = 1500-3500 kg /m 3, Y = 8 .  105-800 �9 105 Pa, c~ = 0.1-11.2, 3'0 = 50-200 J / m  2, Vm~x = 300-1300 m/sec, 
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TABLE I 

P, 105 Pa 

1 

10 
100 
500 

1 

10 
100 
500 

Y~IY =1 Y21Y = IO { Y21Y =100 
Y2 = 8- 107 Pa 

a b 1 a b l a b l 

2.4 49.6 106 3.62 73.1 228 3.95 78.2 267 
2.39 46.6 74.8 3.43 66.1 130 3.68 70.0 144 
2.25 30.5 31.4 2.63 36.8 38.8 2.71 37.7 39.9 
1.9 13.4 13.4 1.98 14 .1  1 4 . 1  1 .98  14.2 14.2 

]/2 ---- 8- lO s Pa 

1.64 9.15 131 2.22 13.0 276 2.37 13.8 320 
1.64 9.08 75.9 2.21 12.9 137 2.35 13.6 153 

1 . 6 3 8 . 4 6 2 4 . 1 . 2 1  1 : 0 8 3 6 . 5 2 . 2 1 1 2 . 1 3 9 . 3  
1 . 5 8 6 . 5 4 8 . 4 8 1 . 8 4 . 1 2 . 4 1 . 8 8 8 . 2 1 1 2 . 9  

P = 105-107 Pa, a0 = 0.0225-0, 1 m, IQ = 8 �9 107-8 �9 10 a Pa, and a2 = 4-11.2. The above-considered range 
of parameters includes the basic rocks (from coal to strong granite and diabases). For the dimensions of the 
radial-crack zone (N = 8), variation in one of the parameters yields the estimate of the effect of various 
parameters from the initial set: 

l ~0.1.0.2 v0.5,0.5 
F Uma.xA 2 'h0 

- -  ~ Ar0.sp0.,v0.,,,.0.1~0.sp0.5~0.16" (25) 
a 0  �9 �9 J-J ~ ~ I 0  ~ ~ 2  

Evidently, this dependence indicates the great importance of the parameters Y2, 70, N,  a0, Vmax, and P for 
determination of the fragmentation in the radial-crack zone that is caused by an explosion of a cylindrical 
charge. The more detailed calculations were made with variation of the strength parameters of the medium 
Y, a,  Y2, and cz2 on the basis of the initial set. 

The parameters Y and a,  which are the quantities that  determine the deformation of the medium on 
the beyond-the-bounds descending compression branch of the compression diagram, have been poorly studied. 
Of interest is the effect of the loading rate on the values of the strength parameters I/2 and 02. In the initial set 
of parameters, I~ was set larger by approximately a factor of 5 than the average ar for rocks and Y = 0.11~. 
Table 1 gives the values of the  maximum cavity (a) and fragmentation-zone (b) radii and of the crack length 
(l) for N = 8 as a function of Y z / Y  for the external pressure P with a = 4 and a2 = 11.2. 

Table 1 shows that a proportional increase in 1~ and Y leads to a marked decrease in the cavity radius 
and in the fragmentation zone along with a simultaneous slow increase in the radial-crack zone. Variations in 
Yz/Y1 and P exert a stronger effect on the dimension of the radial-crack zone. For large values of the external 
pressure, the radiM-crack zone decreases compared with the fragmentation zone and can disappear altogether. 

Figure 4 shows the dependences a/ao and b/ao (curves 1 and 2), and ls/ao on P for a0 = 0.0225, 
0.05, 0.1, and 0.15 (curves 3-6) and "/0 = 150 J / m  2. For other values of 3'0, a0, and N, the dimensions of the 
radial-crack zone can be calculated by (23) with ak and bk, which are known, for example, from Table 1. We 
can also find such fracture parameters in this zone as Nmax(/) and IN = /max(N). For strength parameters 
different from those indicated in Table 1, it suffices to use one value of N, a0, and "r0 from the original set to 
determine the fracture intensity in the radial-crack zone. 

C o m p a r i s o n  w i t h  t h e  D a t a  o f  Q u a s i - S t a t i c  M o d e l s .  The proposed description of brittle-medium 
fracture by the explosion of a cylindrical charge also admits a quasi-static interpretation to establish the final 
fracture parameters [1, 3]. To this end, it is sufficient to use the static solution in the grinding zone and to 
adopt the assumption that the medium in the grinding and radial-crack zones is in a limiting state. Here, in 
(17), al = ac and instead of (4) we have 

at(r) = Y /a  + F r  -~/0+~) .  (26) 
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Applying the general solutions to the grinding and elasticity zones along with the boundary conditions in 
the cavity (8) and in the fragmentation wave (9), for the desired a and b, in the case of the absence of the 
radial-crack zone we obtain the following system of algebraic equations: 

(Ylcz - q)(b/a)  a/O+c') - Ylct  - p(a) = O, a 2 - a2o = b 2 - (b - uz,) 2, 

(1 + v)b(q + P) Y2 + 2(1 + cz2)P (27) 

u b = -  E ' q =  2+ct2 

The limiting equilibrium state of the grinding, radial-crack, and elasticity zones is defined by the relations 

(Yl,  + - Yl,  - p(a) = 0, _ = _ (b - ub) 2, 
(28) 

(1 + v)b(q + P)  (1 - v2) c z u b =  E + ~ bln~,  q = - a c ( b / l ) ,  N = ~ ' I ( 1 -  2 
) 

2 7 0 ;  (q + 
2P) 2, 

which are derived from the general solutions (6), (7), and (27) and the boundary conditions (8) and (17). 
For the initial set of parameters, the calculation by formulas (27) yields a = 1.5 and b = 8.3, which 

are markedly smaller than the results of the dynamic calculations (ak = 2.2 and bk = 13 for the conservative 
values of the cavity and grinding-zone radii, see Fig. 2). 

The static estimates of the crack size are considerably larger than the dynamic ones: ls ~ 667 instead of 
276 in dynamics. Here the static solution in the presence of the grinding, radial-crack, and elasticity zones does 
not exist, and an estimate was made using the scheme of two zones: a zone of radial cracks which originate in 
the cavity and an elasticity zone. In this variant, the solution for a and I is found from the system of equations 
in dimensionless form: 

a - l +  (1 + v ) I N  a ' l (1 -  u2) (p  ; )2  
P ( " ) =  ( l + u ) [ ( 1 - u ) l n l + l ] '  N =  2~0 (a) - 2 P  , (29) 

which were obtained from solutions (6) and (7) and conditions (8) and (17). 
The overestimated crack dimensions which were obtained by the static calculations are due to the 

underestimated dimensions of the grinding zone. In the dynamic calculation, the grinding zone is found with 
allowance for fragmentation-wave propagation and inertia of the medium. In this case, large values for b 
gives rise to decreasing l, because the compliance of the medium in the grinding zone is larger than in the 
radial-crack zone. Owing to this, with cracks in an equilibrium state, the pressure in the cavity proves to be 
somewhat smaller for large b, thus leading to the reduction of I. 

Basic Resul t s .  
(1) We have designed a scheme of calculation of the fracture parameters for a brittle medium which 

is caused by the explosion of a cylindrical charge with allowance for the dynamics of the grinding zone and 
crack propagation. 

(2) Throwing the material in the grinding zone deep in the medium at the stage of its development 
and blocking the material upon its inverse compression have been shown to be the determining factors for the 
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development of the radial-crack zone. 
(3) Various parameters have been ranked based on their effect on the result of the explosion, and the 

most important ones have been selected, namely, ac, ~0, Vmax, Y, P, and a0. In this connection, the problem 
arises of the determination, for rocks, of the dynamic uniaxial-compression parameters ac and yielding 70, 3q, 
and Vmax and also of the cohesion and friction coefficients at the grinding zone. 

(4) The calculation results in the dynamic and static approximations have been compared. We have 
shown that according to static models, the cavity and grinding-zone dimensions in the explosion of a cylindrical 
charge turn out to be underestimated, and the dimension of the radial-crack zone turns out to be grossly 
overestimated, which shows the necessity of taking into account the dynamics. 

(5) In the present work, the processes of detonation-product flow along a well and their penetration 
into the grinding zone have not been taken into account and need further investigation. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
01169). 

R E F E R E N C E S  

1. 

. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

P. A. Martynyuk and E. N. Sher, "Estimation of the dimensions of a radial-crack zone formed in a 
contained camouflet explosion of a line charge in a brittle medium," Zh. Prikl. Mekh. Tekh. Fiz., 25, 
No. 4, 127-132 (1984). 
E. N. Sher, "Dynamic development of a raAial-crack zone during a camouflet explosion," Zh. Prikl. 
Mekh. Tekh. Fiz., 29, No. 1, 164-167 (1988). 
V. N. Rodionov, V. V. Adushkin, A. N. Romashev, et al., Mechanical Effects of an Underground 
Explosion [in Russian], Nedra, Moscow (1971). 
S. S. Grigor'yan, "Some questions of the mathematical theory of deformation and failure of solid 
rocks," Prikl. Mat. Mekh., 31, No. 4, 643-649 (1967). 
G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974). 
P. Chadwick, A. Cox, and H. Hopkins, "Mechanics of deep underground explosions," Philos. Trans. 
Roy. Soc. London, Set. A, 256, No. 1070 (1964). 
V. I. Mashukov, V. D. Baryshnikova, and N. V. Pirlya, "Rock structure and its strength certificate," 
Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 3, 21-27 (1990). 
A. N. Stavrogin and A. G. Protosenya, Strength of Rocks and Shaft Stability at Large Depths [in 
Russian], Nedra, Moscow (1985). 
E. N. Sher, "Example of calculation of the motion of radial cracks formed by an explosion in a brittle 
medium in the quasi-static approximation," Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 2, 40-42 
(1982). 
E. N. Sher, "Equilibrium of a radial-crack system," Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 156-159 (1974). 
R. A. Westman, "Pressurized star crack," J. Math. Phys., 43, No. 3, 191-198 (1964). 

492 


